home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Almathera Ten Pack 2: CDPD 1
/
Almathera Ten on Ten - Disc 2: CDPD 1.iso
/
pd
/
051-075
/
068
/
mg1b
/
random.c
< prev
next >
Wrap
C/C++ Source or Header
|
1995-03-13
|
14KB
|
552 lines
/*
* Assorted commands.
* The file contains the command
* processors for a large assortment of unrelated
* commands. The only thing they have in common is
* that they are all command processors.
*/
#include "def.h"
/*
* Display a bunch of useful information about
* the current location of dot. The character under the
* cursor (in octal), the current line, row, and column, and
* approximate position of the cursor in the file (as a percentage)
* is displayed. The column position assumes an infinite position
* display; it does not truncate just because the screen does.
* This is normally bound to "C-X =".
*/
/*ARGSUSED*/
showcpos(f, n, k) {
register LINE *clp;
register long nchar;
long cchar;
register int nline, row;
int cline, cbyte; /* Current line/char/byte */
int ratio;
KEY keychar();
clp = lforw(curbp->b_linep); /* Collect the data. */
nchar = 0;
nline = 0;
for (;;) {
++nline; /* Count this line */
if (clp == curwp->w_dotp) {
cline = nline; /* Mark line */
cchar = nchar + curwp->w_doto;
if (curwp->w_doto == llength(clp))
cbyte = '\n';
else
cbyte = lgetc(clp, curwp->w_doto);
}
nchar += llength(clp) + 1; /* Now count the chars */
if (clp == curbp->b_linep) break ;
clp = lforw(clp);
}
row = curwp->w_toprow; /* Determine row. */
clp = curwp->w_linep;
while (clp!=curbp->b_linep && clp!=curwp->w_dotp) {
++row;
clp = lforw(clp);
}
++row; /* Convert to origin 1. */
/*NOSTRICT*/
/* nchar can't be zero (because of the "bonus" \n at end of file) */
ratio = (100L*cchar) / nchar;
ewprintf("Char: %c (0%o) point=%ld(%d%%) line=%d row=%d col=%d",
(int) keychar(cbyte, FALSE), cbyte, cchar, ratio, cline, row,
getcolpos());
return (TRUE);
}
getcolpos() {
register int col, i, c;
col = 0; /* Determine column. */
for (i=0; i<curwp->w_doto; ++i) {
c = lgetc(curwp->w_dotp, i);
if (
#ifdef NOTAB
!(mode & MNOTAB) &&
#endif
c == '\t')
col |= 0x07;
else if (ISCTRL(c) != FALSE)
++col;
++col;
}
return col + 1; /* Convert to origin 1. */
}
/*
* Twiddle the two characters on either side of
* dot. If dot is at the end of the line twiddle the
* two characters before it. Return with an error if dot
* is at the beginning of line; it seems to be a bit
* pointless to make this work. This fixes up a very
* common typo with a single stroke. Normally bound
* to "C-T". This always works within a line, so
* "WFEDIT" is good enough.
*/
/*ARGSUSED*/
twiddle(f, n, k) {
register LINE *dotp;
register int doto, odoto;
register int cl;
register int cr;
dotp = curwp->w_dotp;
odoto = doto = curwp->w_doto;
if (doto==llength(dotp) && --doto<0)
return (FALSE);
cr = lgetc(dotp, doto);
if (--doto < 0)
return (FALSE);
cl = lgetc(dotp, doto);
lputc(dotp, doto+0, cr);
lputc(dotp, doto+1, cl);
if (odoto != llength(dotp)) ++(curwp->w_doto);
lchange(WFEDIT);
return (TRUE);
}
/*
* Quote the next character, and
* insert it into the buffer. All the characters
* are taken literally, with the exception of the newline,
* which always has its line splitting meaning. The character
* is always read, even if it is inserted 0 times, for
* regularity.
*/
/*ARGSUSED*/
quote(f, n, k) {
register int s;
register KEY c;
if (kbdmop != NULL) c = (KEY) *kbdmop++;
else c = getkey(KQUOTE);
if (n < 0)
return (FALSE);
if (n == 0)
return (TRUE);
if (c == '\n') {
do {
s = lnewline();
} while (s==TRUE && --n);
return (s);
}
return (linsert((RSIZE) n, (char) c));
}
/*
* Ordinary text characters are bound to this function,
* which inserts them into the buffer. Characters marked as control
* characters (using the CTRL flag) may be remapped to their ASCII
* equivalent. This makes TAB (C-I) work right, and also makes the
* world look reasonable if a control character is bound to this
* this routine by hand. Any META or CTLX flags on the character
* are discarded. This is the only routine that actually looks
* the the "k" argument.
*/
/*ARGSUSED*/
selfinsert(f, n, k) {
register int c;
if (n < 0)
return (FALSE);
if (n == 0)
return (TRUE);
c = k & KCHAR;
if ((k&KCTRL)!=0 && c>='@' && c<='_') /* ASCII-ify. */
c -= '@';
return (linsert((RSIZE) n, c));
}
/*
* Open up some blank space. The basic plan
* is to insert a bunch of newlines, and then back
* up over them. Everything is done by the subcommand
* procerssors. They even handle the looping. Normally
* this is bound to "C-O".
*/
/*ARGSUSED*/
openline(f, n, k) {
register int i;
register int s;
if (n < 0)
return (FALSE);
if (n == 0)
return (TRUE);
i = n; /* Insert newlines. */
do {
s = lnewline();
} while (s==TRUE && --i);
if (s == TRUE) /* Then back up overtop */
s = backchar(f, n, KRANDOM); /* of them all. */
return (s);
}
/*
* Insert a newline.
* If you are at the end of the line and the
* next line is a blank line, just move into the
* blank line. This makes "C-O" and "C-X C-O" work
* nicely, and reduces the ammount of screen
* update that has to be done. This would not be
* as critical if screen update were a lot
* more efficient.
*/
/*ARGSUSED*/
newline(f, n, k) {
register LINE *lp;
register int s;
if (n < 0)
return (FALSE);
while (n--) {
lp = curwp->w_dotp;
if (llength(lp) == curwp->w_doto
&& lp != curbp->b_linep
&& llength(lforw(lp)) == 0) {
if ((s=forwchar(FALSE, 1, KRANDOM)) != TRUE)
return (s);
} else if ((s=lnewline()) != TRUE)
return (s);
}
return (TRUE);
}
/*
* Delete blank lines around dot.
* What this command does depends if dot is
* sitting on a blank line. If dot is sitting on a
* blank line, this command deletes all the blank lines
* above and below the current line. If it is sitting
* on a non blank line then it deletes all of the
* blank lines after the line. Normally this command
* is bound to "C-X C-O". Any argument is ignored.
*/
/*ARGSUSED*/
deblank(f, n, k) {
register LINE *lp1;
register LINE *lp2;
register RSIZE nld;
lp1 = curwp->w_dotp;
while (llength(lp1)==0 && (lp2=lback(lp1))!=curbp->b_linep)
lp1 = lp2;
lp2 = lp1;
nld = (RSIZE) 0;
while ((lp2=lforw(lp2))!=curbp->b_linep && llength(lp2)==0)
++nld;
if (nld == 0)
return (TRUE);
curwp->w_dotp = lforw(lp1);
curwp->w_doto = 0;
return (ldelete((RSIZE)nld, KNONE));
}
/*
* Delete any whitespace around dot, then insert a space.
*/
/*ARGSUSED*/
justone(f, n, k) {
(VOID) delwhite(f, n, k);
return linsert((RSIZE) 1, ' ');
}
/*
* Delete any whitespace around dot.
*/
/*ARGSUSED*/
delwhite(f, n, k) {
register int col, c, s;
col = curwp->w_doto;
while ((c = lgetc(curwp->w_dotp, col)) == ' ' || c == '\t')
++col;
do
if ((s = backchar(FALSE, 1, KRANDOM)) == FALSE) break;
while ((c = lgetc(curwp->w_dotp, curwp->w_doto)) == ' ' || c == '\t') ;
if (s == TRUE) (VOID) forwchar(FALSE, 1, KRANDOM);
(VOID) ldelete((RSIZE)(col - curwp->w_doto), KNONE);
return (TRUE);
}
/*
* Insert a newline, then enough
* tabs and spaces to duplicate the indentation
* of the previous line. Assumes tabs are every eight
* characters. Quite simple. Figure out the indentation
* of the current line. Insert a newline by calling
* the standard routine. Insert the indentation by
* inserting the right number of tabs and spaces.
* Return TRUE if all ok. Return FALSE if one
* of the subcomands failed. Normally bound
* to "C-J".
*/
/*ARGSUSED*/
indent(f, n, k) {
register int nicol;
register int c;
register int i;
if (n < 0)
return (FALSE);
while (n--) {
nicol = 0;
for (i=0; i<llength(curwp->w_dotp); ++i) {
c = lgetc(curwp->w_dotp, i);
if (c!=' ' && c!='\t')
break;
if (c == '\t')
nicol |= 0x07;
++nicol;
}
if (lnewline() == FALSE || ((
#ifdef NOTAB
mode&MNOTAB) ? linsert((RSIZE)nicol, ' ')==FALSE : (
#endif
((i=nicol/8)!=0 && linsert((RSIZE) i, '\t')==FALSE) ||
((i=nicol%8)!=0 && linsert((RSIZE) i, ' ')==FALSE))))
return (FALSE);
}
return (TRUE);
}
/*
* Delete forward. This is real
* easy, because the basic delete routine does
* all of the work. Watches for negative arguments,
* and does the right thing. If any argument is
* present, it kills rather than deletes, to prevent
* loss of text if typed with a big argument.
* Normally bound to "C-D".
*/
/*ARGSUSED*/
forwdel(f, n, k) {
if (n < 0)
return (backdel(f, -n, KRANDOM));
if (f != FALSE) { /* Really a kill. */
if ((lastflag&CFKILL) == 0)
kdelete();
thisflag |= CFKILL;
}
return (ldelete((RSIZE) n, f ? KFORW : KNONE));
}
/*
* Delete backwards. This is quite easy too,
* because it's all done with other functions. Just
* move the cursor back, and delete forwards.
* Like delete forward, this actually does a kill
* if presented with an argument.
*/
/*ARGSUSED*/
backdel(f, n, k) {
register int s;
if (n < 0)
return (forwdel(f, -n, KRANDOM));
if (f != FALSE) { /* Really a kill. */
if ((lastflag&CFKILL) == 0)
kdelete();
thisflag |= CFKILL;
}
if ((s=backchar(f, n, KRANDOM)) == TRUE)
s = ldelete((RSIZE) n, f ? KFORW : KNONE);
return (s);
}
/*
* Kill line. If called without an argument,
* it kills from dot to the end of the line, unless it
* is at the end of the line, when it kills the newline.
* If called with an argument of 0, it kills from the
* start of the line to dot. If called with a positive
* argument, it kills from dot forward over that number
* of newlines. If called with a negative argument it
* kills any text before dot on the current line,
* then it kills back abs(arg) lines.
*/
/*ARGSUSED*/
killline(f, n, k) {
register RSIZE chunk;
register LINE *nextp;
register int i, c;
if ((lastflag&CFKILL) == 0) /* Clear kill buffer if */
kdelete(); /* last wasn't a kill. */
thisflag |= CFKILL;
if (f == FALSE) {
for (i = curwp->w_doto; i < llength(curwp->w_dotp); ++i)
if ((c = lgetc(curwp->w_dotp, i)) != ' ' && c != '\t')
break;
if (i == llength(curwp->w_dotp))
chunk = llength(curwp->w_dotp)-curwp->w_doto + 1;
else {
chunk = llength(curwp->w_dotp)-curwp->w_doto;
if (chunk == 0)
chunk = 1;
}
} else if (n > 0) {
chunk = llength(curwp->w_dotp)-curwp->w_doto+1;
nextp = lforw(curwp->w_dotp);
i = n;
while (--i) {
if (nextp == curbp->b_linep)
break;
chunk += llength(nextp)+1;
nextp = lforw(nextp);
}
} else { /* n <= 0 */
chunk = curwp->w_doto;
curwp->w_doto = 0;
i = n;
while (i++) {
if (lback(curwp->w_dotp) == curbp->b_linep)
break;
curwp->w_dotp = lback(curwp->w_dotp);
curwp->w_flag |= WFMOVE;
chunk += llength(curwp->w_dotp)+1;
}
}
/*
* KFORW here is a bug. Should be KBACK/KFORW, but we need to
* rewrite the ldelete code (later)?
*/
return (ldelete(chunk, KFORW));
}
/*
* Yank text back from the kill buffer. This
* is really easy. All of the work is done by the
* standard insert routines. All you do is run the loop,
* and check for errors. The blank
* lines are inserted with a call to "newline"
* instead of a call to "lnewline" so that the magic
* stuff that happens when you type a carriage
* return also happens when a carriage return is
* yanked back from the kill buffer.
* An attempt has been made to fix the cosmetic bug
* associated with a yank when dot is on the top line of
* the window (nothing moves, because all of the new
* text landed off screen).
*/
/*ARGSUSED*/
yank(f, n, k) {
register int c;
register int i;
register LINE *lp;
register int nline;
if (n < 0)
return (FALSE);
nline = 0; /* Newline counting. */
while (n--) {
isetmark(); /* mark around last yank */
i = 0;
while ((c=kremove(i)) >= 0) {
if (c == '\n') {
if (newline(FALSE, 1, KRANDOM) == FALSE)
return (FALSE);
++nline;
} else {
if (linsert((RSIZE) 1, c) == FALSE)
return (FALSE);
}
++i;
}
}
lp = curwp->w_linep; /* Cosmetic adjustment */
if (curwp->w_dotp == lp) { /* if offscreen insert. */
while (nline-- && lback(lp)!=curbp->b_linep)
lp = lback(lp);
curwp->w_linep = lp; /* Adjust framing. */
curwp->w_flag |= WFHARD;
}
return (TRUE);
}
/*
* Commands to toggle the five modes. Without an argument, sets the
* mode on, with an argument, sets the mode off.
*/
/*ARGSUSED*/
bsmapmode(f, n, k) {
if ((mode&MBSMAP) != MBSMAP) mode |= MBSMAP;
else mode &= ~MBSMAP;
upmodes((BUFFER *) NULL);
return TRUE;
}
/*ARGSUSED*/
flowmode(f, n, k) {
if ((mode&MFLOW) != MFLOW) mode |= MFLOW;
else mode &= ~MFLOW;
upmodes((BUFFER *) NULL);
return TRUE;
}
/*ARGSUSED*/
indentmode(f, n, k) {
if ((mode&MINDENT) != MINDENT) {
mode |= MINDENT;
if ((binding[KCTRL|'M'] = symlookup("newline-and-indent"))
== NULL)
panic("no newline-and-indent in indentmode");
if ((binding[KCTRL|'J'] = symlookup("insert-newline")) == NULL)
panic("no insert-newline in indentmode");
} else {
mode &= ~MINDENT;
if ((binding[KCTRL|'M'] = symlookup("insert-newline")) == NULL)
panic("no insert-newline in indentmode");
if ((binding[KCTRL|'J'] = symlookup("newline-and-indent"))
== NULL)
panic("no newline-and-indent in indentmode");
}
upmodes((BUFFER *) NULL);
return TRUE;
}
/*ARGSUSED*/
fillmode(f, n, k) {
if ((mode&MFILL) != MFILL) {
mode |= MFILL;
if ((binding[' '] = symlookup("insert-with-wrap")) == NULL)
panic("no insert-with-wrap in fillmode");
} else {
mode &= ~MFILL;
if ((binding[' '] = symlookup("self-insert-command")) == NULL)
panic("no self-insert-command in fillmode");
}
upmodes((BUFFER *) NULL);
return TRUE;
}
#ifdef NOTAB
space_tabpos(f, n, k)
int f, n;
{
int stat;
if(n<0) return FALSE;
if(n==0) return TRUE;
return linsert(((RSIZE)n<<3) - (curwp->w_doto & 7), ' ');
}
notabmode(f, n, k) {
if((mode&MNOTAB) != MNOTAB) {
mode |= MNOTAB;
if ((binding[KCTRL|'I'] = symlookup("space-to-tabstop")) == NULL)
panic("no space-to-tabstop in notabmode");
} else {
mode &= ~ MNOTAB;
if ((binding[KCTRL|'I'] = symlookup("self-insert-command")) == NULL)
panic("no self-insert-command in notabmode");
}
upmodes((BUFFER *) NULL);
return TRUE;
}
#endif